High Performance Computing and Modeling Infrastructure

Presented by

Brian Gross (GFDL) and V. Balaji (Princeton University)

Geophysical Fluid Dynamics Laboratory Review

May 20 - May 22, 2014

GFDL's available computing doubles every ~2 years

HISTORY OF GFDL COMPUTING

Growth of Computational Power with Time

Scientific Advances are Linked to Computer Power

HISTORY OF GFDL COMPUTING

GFDL depends on sustained, dedicated production computing

An Infusion of Funds Accelerated NOAA's HPC Capacity

GFDL uses as much computing as it can grab

GFDL relies on external partners

DOE/ORNL

- GAEA system for production computing
- TITAN to explore GPU architectures
- Workflow research
- DOE/ANL (competitively awarded INCITE grant)
 - 150M core-hours on Mira (Blue Gene Q) to explore extreme scaling
- TACC (competitively awarded XSEDE grant)
 - To explore Intel Phi architecture on Stampede

On the horizon

- Disaster Recovery Act (Sandy Supplemental) supports
 - an upgrade to Zeus in FY15
 - A fine-grained parallel system in FY16
- Targeted for FY16
 - Upgrade Gaea
 - Additional support for software architecture reengineering
- Continued partnerships to explore nearexascale performance

... but this is not enough

Computational constraints

Capability: Maximum simulated years per day of a single model instance.

Capacity: Aggregate SYPD on available computing hardware.

Models choices (resolution, complexity, ensemble size) made based upon capability requirements (e.g 5-10 SYPD for dec-cen, 50-100 SYPD for carbon cycle) and available allocation.

Moore's Law: capability increases 2X every 18 months.

We are in the post-Moore era: increased concurrency, but arithmetic does not get faster (quite likely slower!)

Harder to program, understand behavior and performance, possible risks to reproducibility

Requires: judicious balanced investment between hardware and software.

GFDL ESM Genealogy

FMS and FRE

- All of the models shown above were built with codes in the Flexible Modeling System (FMS): model components sharing a common codebase, common infrastructure (e.g parallelism and I/O) and superstructure (coupling interface)
- The FMS Runtime Environment (FRE) provides a fault-tolerant, reproducible environment for configuring, testing, running and analyzing FMS-based models.
- The FRE workflow includes publication of datasets to an external server (ESGF).

The hardware jungle and the software zoo

- Processor clock speeds have stalled: it all hinges now on increased concurrency
- Hosted systems (e.g CPU+GPU)
- Many-core systems (e.g MICs)
- Equally many programming techniques! MPI, OMP, OACC, PGAS... harder to program and achieve performance...
- GFDL's conservative approach: standards-based programming model (messages, threads, vectors), offloaded I/O. Extensive prototyping on experimental hardware.

Fault-resilient workflow

- Reproducible, fault-tolerant workflow across remote compute and local archive, including publication to ESGF node
- Large scale automation and testing
- Also the basis for disaster recovery plan

Summary

- GFDL Strategic Plan: process studies, development of comprehensive models, climate extremes, experimental prediction, downstream science.
- Continued development of atmospheric dynamical core, unification of ocean modeling capabilities.
- Convergence of multiple model branches into trunk model CM4.
- Forecast workflow.

Challenges

- Right way to program the next generation of parallel machines
- Component and process concurrency
- Reproducibility: what if models became more like experimental biological systems (where an individual cell "culture" is not reproducible, only the ensemble is)?
- How to understand and analyze performance on a "sea of functional units"?